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I. INTRODUCTION 

 
Various aquatic toxicity data are required as a condition of pesticide registration 
per USEPA OPPTS Group A Aquatic Fauna Test Guidelines.  These include acute 
toxicity to Daphnia magna, gammarid, mysid, Eastern oyster (Crassostrea 
virginica), Fathead minnow ( Pimephales promelas), rainbow trout, bluegill sunfish, 
and an alga Selenastrum. However, these data are often inadequate for evaluating 
aquatic risks from pesticides or prioritizing pesticides for monitoring. For example, 
proposed California water quality objectives for diazinon are based on acute and 
chronic toxicity endpoints for a number of sensitive organisms including the water 
flea Ceriodaphnia dubia (CVRWQCB, 2003). Many of these data were not 
required for diazinon or other organophosphate pesticide registrations. Potential 
sediment toxicities of recent pyrethroid detections have been evaluated using the 
sensitive sediment organism Hyallela azteca (Amweg et al., 2005). H. azteca data 
were not required for pyrethroid registrations, and data for many pyrethroids are 
not yet available from the literature. Therefore, methods to estimate aquatic 
toxicities of these and many other pesticides are needed to conduct screening 
level aquatic toxicity evaluations in determining monitoring priorities, and for 
identifying additional toxicity data needs for certain pesticides. 
 
In addition, computational procedures for predicting aquatic toxicities of pesticides 
and other organic chemicals, including pesticide formulation constituents, are 
rapidly developing (Danish EPA, USEPA ASTER program, European Commission 
Directorate General, Joint Research Centre). Many of these procedures are based 
on quantitative structure-activity relationships (QSAR, Appendix A), where 
environmental behavior or effects of chemicals are predicted based on group 
contribution methods, molecular electronic structure and/or topology (Appendix A). 
In the long term, DPR will need expertise and knowledge in this area as more 
sophisticated methods and techniques are devised. This knowledge will also allow 
DPR to critically evaluate future data submissions based on QSAR and new 
approaches for characterizing aquatic toxicity. 

 
II. OBJECTIVES 

 
The general objectives of this study are to (a) evaluate the overall use of QSAR 
modeling for predicting different aquatic toxicological and environmental endpoints 
for use in a screening and/or prioritizing pesticides of concern in surface water, (b) 
develop QSAR models for predicting aquatic toxicities and environmental fate for 



selected pesticide classes, (c) compare the developed models to current QSAR 
modeling approaches for predicting aquatic toxicities and environmental fate, and 
(d) validate the QSAR models to characterize prediction accuracy and capability. 
The specific tasks are to: 
 
A. Compile a variety of environmental fate and aquatic toxicity data for different 

pesticide classes. 
B. Calculate various quantum chemical parameters (e.g., electron density, charge 

distribution, chemical hardness/softness, molecular conformation, etc.) and 
chemical topology parameters (e.g., bond distances, connectivity, molecular 
size and shape, etc.), which have already been shown to be meaningful 
predictors of chemical behavior (Sullivan, et al, 2000; Karelson, et al, 1996; 
Gross and Seybold, 2001, Vaz, 1997). 

C. Develop QSAR models based on data from (i) and (ii) above for predicting 
aquatic toxicity using established statistical procedures, including goodness of 
fit analysis on model development data, bootstrap (cross-validation) analysis 
based on the “leave one datum out” approach, and external validation on an 
independent data set where possible (Wold and Dunn, 1982; Walker, et al, 
2003). 

D. Compare results generated from the validated models to those derived from 
empirical models such as ECOSAR (US EPA Exposure Assessment Tools and 
Models Software Suite). 

E. If possible, provide a mechanistic interpretation of derived relationships in 
selected cases, perhaps adding insight into little known toxic modes of action 
and degradative pathways.   

F. Employ validated models to provide predicted values to fill data gaps when 
feasible and appropriate. “Appropriate” refers to screening-level applications 
such as prioritizing pesticides for monitoring and/or obtaining further aquatic 
toxicity data for further study. 

 
III. PERSONNEL 

 
Staff from the Registration and Environmental Monitoring Branch, Surface Water 
Protection Program, under the general direction of Kean S. Goh, PhD., Agricultural 
Program Supervisor IV, will conduct this study.  
 
Key personnel are listed below: 
 
Principal Investigator:   Jonathan Sullivan, Ph.D.  
Principal Investigator: Frank Spurlock, Ph.D.  
 
To resolve questions concerning this monitoring project please contact Jonathan 
Sullivan at (916) 322-6767 

 
IV. STUDY DESIGN  

 
Aquatic toxicity data for a variety of classes of pesticides and other organic 
compounds will be collected from numerous regulatory, academic, and commercial 
database sources and organized by chemical class and endpoints.  Principal 



databases to be evaluated include the following: 
 

1. US EPA ECOTOX (AQUIRE) Database (http://www.epa.gov/ecotox/): provides 
single chemical toxicity information for aquatic and terrestrial life.  Peer-reviewed 
literature is the primary source of information encoded in the database. Pertinent 
information on the species, chemical, test methods, and results presented by the 
author(s) are abstracted and entered into the database.  
 
2. PAN Pesticide Database (www.pesticideinfo.org): utilizes the data from the EPA 
ECOTOX database to calculate an average acute toxicity (LC50) value by organism 
type/species. 
 
3. US EPA Office of Pesticide Programs Pesticide Ecotoxicity Database 
(http://www.ipmcenters.org/Ecotox/index.cfm): consists of data compiled from actual 
studies reviewed by EPA in conjunction with pesticide registration or reregistration 
and studies performed by USEPA, USDA and USFWS laboratories which have been 
reviewed by Ecological Effects Branch biologists and judged acceptable for use in 
the ecological risk assessment process. 

  
4. Cal/Ecotox ( http://endeavor.des.ucdavis.edu/calecotox/): collates species-specific 
information for 28 exposure factors (e.g., body weights, ingestion rates, seasonal 
activities and population dynamics) commonly used to estimate exposure to 
contaminants.  
 
5. ORNL Benchmarks: (http://www.hsrd.ornl.gov/ecorisk/): Oak Ridge National 
Laboratory (ORNL) contains several databases of ecotoxicological information 
covering aquatic biota, terrestrial wildlife, terrestrial plants, sediment fauna, soil 
invertebrates and microbial processes.  The benchmark criteria have been 
developed for a wide range of contaminants including metals, and organochlorine 
and organic compounds, and concentrate specifically on ecotoxicological criteria.  

 
Within the selected chemical classes, compounds will be arranged into congeneric 
series’ and, with associated endpoint values, comprise the training and testing sets.  
Training data will be chosen randomly based upon their endpoint activities, i.e., it is 
desirable to calibrate a model having as wide a range of activities as possible.   Data 
not used for training purposes will be used for model validation.  Model construction 
is the process that correlates the molecular descriptors to the activities.  After the 
candidate model is derived, it will be internally validated, i.e., used to predict the 
activities of the molecules used to create the model (the training set) - this is a 
method of internally checking the model for robustness.  For this study, cross-
validation methods and the PRESS statistic (Predicted Error Sum of Squares) will be 
used for the internal validation of candidate models.  If a training model is judged 
functional, it will be externally validated using an independent set of compounds (the 
testing set).  Externally validated QSAR models will be utilized for prediction of 
endpoint values of unknowns (fill data gaps), to compare predictions with other 
regulatory models (e.g., the US EPA’s ECOSAR) and to prioritize chemicals with 
respect to projected toxicity and environmental properties.  
 

http://www.epa.gov/ecotox/
http://www.pesticideinfo.org
http://www.ipmcenters.org/Ecotox/index.cfm
http://endeavor.des.ucdavis.edu/calecotox/
http://www.hsrd.ornl.gov/ecorisk/


Both empirical and theory-based descriptors will be utilized in this study to encode 
structural variables, although the use of theoretical parameters will be emphasized.  
Empirical descriptors may be measured or estimated and include physicochemical 
properties or constitutional or geometrical terms. Non-empirical descriptors are 
typically structural properties based on topological or graph theory and as such they 
are so-called 2-D indices. Quantum chemical descriptors are based on an optimized 
3-D structure of molecules.  Some of the more profitable categories are listed below: 

 
1. Constitutional Descriptors (e.g., total number of atoms, bonds, rings, molecular 

weight, atomic number, valence number, etc.)  
 
2. Topological Descriptors (Wiener, 1947; Kier and Hall, 1986; Balaban, 1981, Kier, 

1980) 
 
3. Geometrical Descriptors (Karelson, 2000; Connolly, 1983; Richards, 1977) 
 
4. Electrostatic Descriptors (Mulliken, 1955; Csizmadia, 1980; Osmialowski et al., 

1985; Atkins, 1991; Politzer et al., 1991; Murray et al., 1990) 
 
5. MO Related Descriptors (Csizmadia, 1976; Zhou and Parr, 1990; Pearson, 1989, 

Franke, 1984) 
 
6. Quantum-chemical (Csizmadia, 1976; Bodor et al., 1989; Atkins, 1988; Clementi, 

1980; Breneman and Martinov, 1996) 
 

1) MATERIALS AND EQUIPMENT 
 

a) Software: 
i) Spartan ’04 (Wavefunction, Inc.): Molecular Modeling Software. 
ii) MDL QSAR (Elsevier MDL): QSAR Modeling System. 
iii) Molconn-Z (): Topological Indices Software). 
iv) ChemOffice Ultra 2004 (CambridgeSoft, Inc.): Chemical & Biological 

Publishing, Modeling, And Database Software. 
v) Norton SystemWorks Premier (Symantec, Inc.): Utilities & Security 

Software 
 

b) Books: 
i. Mati Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, 

2000. 
ii. Mircea V. Diudea, Ivan Gutman, Jantschi Lorentz, Molecular Topology, 

Nova Science Pub Inc, 2001. 
iii. David B. Cook, Handbook of Computational Quantum Chemistry, Dover 

Publications, 2005. 
iv. Gary M. Rand, Fundamentals Of Aquatic Toxicology; Effects, 

Environmental Fate And Risk Assessment, CRC; 2nd edition. 
v. Wavefunction, Inc., Getting Started with Spartan 3rd Edition, 2004. 
vi. Wavefunction, Inc., Spartan'04 Windows Tutorial and User's Guide, 2001. 
vii. W.J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical 

Calculations, Wavefunction, Inc., 2003. 



viii. Wavefunction, Inc., Spartan Physical Chemistry, 2005. 
 

2) PROCEDURES 
 

a) Collect environmental/toxicological endpoint data from database resources. 
i) Organize according to chemical classes. 
ii) Arrange by structural congeners within classes. 

b) Generate structural descriptors. 
i) Collect/calculate empirical descriptors per availability. 
ii) Calculate theoretical descriptors using purchased software packages. 

c) Assemble and test training sets using rational descriptors, i.e., descriptors 
thought to encode for plausible mechanisms, modes of action, charge or 
orbital density distributions, molecular size and/or shape, etc. 

d) Perform internal validation of derived models. 
i) Least squares fit (R2). 
ii) Cross validation (q2). 
iii) PRESS statistic. 

e) Perform external validation of acceptable candidate models using structures 
and endpoint values not used in model calibration (training).  

f) Employ validated models to 
i) Prioritize chemicals according predicted potential to elicit adverse toxic or 

environmental effects. 
ii) Fill data gaps where needed. 
iii) Compare predictions with those generated from other regulatory QSARs. 

g) Write report(s). 
h) Prepare manuscript(s) detailing study for publication. 

 
V. TIMETABLE 
 

1. Setup Computer/Install/Optimize Software: June 2006 
2. Collect/Organize Chemical and Toxicological Databases: Ongoing From 

July 2006 
3. Descriptor Calculation: Ongoing From September 2006 
4. Develop Training Sets: Ongoing From September 2006 
5. Model Validation: Ongoing From September 2006 
6. Preliminary Memorandum: June 2008  
7. Final Report: June 2009  
 



VI.  BUDGET 
 

 
Software:  
 
1. Spartan ’04 (Wavefunction, Inc.)…………………………………………….. $1500 
2. MDL QSAR (Elsevier MDL)……………………………………………...….…$2300 
3. Molconn-Z ………………………………………………………………...….…$1500 
4. ChemOffice Ultra 2004 (CambridgeSoft, Inc.)………………………….…...$2870 
5. Norton SystemWorks Premier (Symantec, Inc.)……………………..……….$100 
6. Upgrades and additional software             …………………………………..$5000 

Computer Software Subtotal…………….……………………..…….$10800 
Tax/Shipping…………….…………………………………………….….$900 
Software Total……………………………….…..…………………..$13,900 

 
Books: 
 
1. Molecular Descriptors in QSAR/QSPR……………………...……….…….….$240 
2. Molecular Topology………………………………………………………....…...$105 
3. Handbook of Computational Quantum Chemistry…………………...………...$29 
4. Fundamentals Of Aquatic Toxicology; Effects, Environmental Fate  

And Risk Assessment………………………………………………….……..…..$89 
5. Getting Started with Spartan 3rd Edition…………………………………….….$30 
6. Spartan'04 Windows Tutorial and User's Guide…………………………….....$35 
7. A Guide to Molecular Mechanics and Quantum Chemical Calculations…    $25 
8. Spartan Physical Chemistry……………………………………………….……..$75 

Book Subtotal…………….……………………..…………………….….$670 
Tax/Shipping…………….…………………………………………….….$150 
Book Total…………………………….…..…….….…………….....…..$820 
 

TOTAL……………………………………………………………………..……...$22,382 
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APPENDIX A: QSAR AND REGULATORY APPLICATIONS 
 

Introduced by Hansch (1962) as an extension of the pioneering work of Hammett 
(1940), the Quantitative Structure-Activity Relationship (QSAR) paradigm is based 
the intuitive notion that the molecular structure of a given chemical determines its 
activity 
 

Activity = ƒ(Structure)   (1) 
 

where the term “activity” is a specific end-point measurement that may represent a 
biological, physicochemical, physiological, or chemical process.  The QSAR 
approach relies on the development of statistical models that relate variations in 
activity to changes in molecular structure using molecular descriptors.  A descriptor 
is defined as the mathematical representation of the information content encoded in 
a molecule and may embody empirical, quantum chemical or non-empirical 
parameters.  Empirical descriptors maybe measured or estimated and include 
physicochemical properties such as hydrophobic, electronic, and steric terms. Non-
empirical descriptors are typically structural properties based on 2-D topological or 
graph theoretical parameters. Quantum chemical descriptors are based on an 
optimized 3-D structure of molecules.   
 
A QSAR model is first trained (calibrated) by mathematically quantifying the 
structures of sets of compounds and comparing them to the measured values of a 
biological or chemical activity or property.  To ensure derived models have adequate 
interpolative capabilities, training sets contain measured end-point values extending 
over a broad range of activities.  Descriptor information and the measured activity 
are then processed into a mathematical model using a variety of statistical methods. 
Typically, a QSAR takes the form of a linear equation 
 

Activity = y = b0 + b1x1 + b2x2 +…bnxn  (2) 
 
where the independent variables xn are descriptors derived from molecular structure 
or some readily measurable or calculable physicochemical property and the 
dependent variable y is a specific chemical or physical property of interest. The 
constants b0, b1, etc., are determined statistically.  The statistical conditions for 
each of the data analytical methods commonly applied in QSAR analyses has been 
rigorously formulated (Wold, 1991).    
 
After a QSAR is developed, it undergoes extensive internal and external validation.  
This process is necessary to test the predictive capability of the derived relationship, 
examine the restrictions of its application, and to evaluate its mechanistic 
hypotheses (Walker, et al, 2003).  Internal validation involves generating goodness-
of-fit statistics and performing cross-validation studies to establish goodness-of-
prediction parameters.  External validation is achieved by assessing the QSAR in 
terms of its predictive power by using data that were not used in the development of 
the model (the testing set).  Employing the same descriptors used to encode the 
independent variables in the training set, end-point values for the testing set are 
generated from the derived model and analyzed statistically.  A variety of statistical 
methods have been developed for the external validation process in QSAR studies  



(Aptula, et al, 2005, Eriksson, et al, 2003). 
 

The ultimate and practical significance of QSAR is that it allows the prediction of the 
activity of interest of structurally related compounds (Walker, 2003). Toxicity and 
environmental fate tests with many chemicals have generated enough data to 
generate models that can be used to calculate toxicity and biodegradation based on 
chemical structure. Such models are not just predicting a chemical property, like the 
boiling point, but are actually predicting what the molecule will do in the environment.  
Accordingly, QSARs are highly amendable to regulatory applications.  A number of 
domestic and international regulatory mandates have in recent years led to 
aggressive explorations into the use of QSAR to evaluate environmental and 
ecotoxicological data (Worth, 2003, Walker, et al, 2002, Bradbury, et al, 2003).   In 
the United States, under Sections 4 and 5 of the Toxic Substances Control Act 
(TSCA, 1993), the TSCA Interagency Testing Committee (ITC) and the U.S. 
Environmental Protection Agency (EPA) employ QSAR to estimate the hazards 
existing and new chemicals. The TSCA chemical inventory currently lists over 
72,000 chemicals, most of which have little or no ecotoxicity or fate data available.  
QSAR methods developed and supported by the EPA now provide predictions and 
crosschecks of test data for the regulation of existing chemicals. QSAR screening of 
the TSCA Inventory has prioritized thousands of existing chemicals for possible 
regulatory testing of: 1) persistent bioaccumulative chemicals, and 2) the high 
ecotoxicity of specific discrete organic chemicals.  (Zeeman et al, 1995).  Around the 
same time as TSCA, the European Union (EU) authorized the Existing Substances 
Regulation (ESR), a European-wide systematic approach to identifying and 
managing the risks of chemicals to human health and the environment.  The ESR 
also supports and encourages the use of QSAR for data evaluation, test strategy 
identification, and the identification and filling of data gaps (Comber et al, 2003).  
Similarly, under the Canadian Environmental Protection Act, 1999 (CEPA 1999), 
Environment Canada uses QSARs for categorizing chemicals on the Domestic 
Substances List (DSL, currently containing more than 23,000 substances), and 
QSAR is often relied upon to fill data gaps (Robinson et al, 2004).  As increasing 
numbers of QSAR methods are developed and validated to predict the ecological 
effects and environmental fate of chemicals, it is anticipated that more regulatory 
agencies and authorities will find them to be acceptable alternatives to chemical 
testing (Cronin, et al, 2003). 

 
One of the most widely used QSAR models developed by the EPA is ECOSAR 
(Ecological Structure Activity Relationships), which predicts the aquatic toxicity of 
new industrial chemicals in the absence of test data.  ECOSAR uses a number of 
LogP-based QSARs to estimate the ecotoxicity of organic compounds for several 
structural classes often resulting in ecotoxicity estimates of a variety of endpoints.  
However, the usefulness of ECOSAR and other QSAR models used for regulatory 
purposes is contentious due largely to their empirical nature.  Structural descriptors 
for such models are typically generated experimentally, and since there is often 
considerable ambiguity in the interpretation of empirical evidence, insights and 
conclusions drawn from such evidence can only be rationalized by inference, 
chemical intuition, and experience.  Empirical models are often plagued by 
persistent uncertainties in the quality of available experimental data and by the 
ambiguous chemical meaning of empirical terms.  Clearly, there is a need to develop 



and test QSAR models for regulatory screening based on a well-defined theoretical 
framework that provides explicit meaning to modeled results. 
 
Quantum chemistry provides a more accurate and detailed description of structure 
than empirical methods.  Quantum chemical methods can be applied to QSAR by 
direct derivation of descriptors from the molecular wave function.   Because of the 
large well-defined physical information content encoded in computational 
expressions and because they are currently readily calculable, their use as 
descriptors in QSAR applications has become more appealing.  The advantage in 
the use of such descriptors is that compounds and their various fragments and 
substituents can be directly characterized on the basis of their molecular structure 
and proposed behaviors can be accounted for directly in terms of chemical activities 
of the compounds under investigation.  In addition, unlike experimental 
measurements there is no statistical error in quantum-chemical calculations 
(although there is inherent error associated with assumptions required to facilitate 
the calculations), thus structure-based models avoid the error associated with the 
measurement of molecular properties (Karelson, et al, 1996). 
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